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ABSTRACT 
 

A species meets its range limit if the climatic condition favourable for the species exceeds its physiological 

limits or if it is controlled by biotic interaction of competitor or limited by dispersal and demographic 

stochasticity or gene flow. Not all species can fully exploit the potentially suitable habitat available to it. 

Only a few may be capable of ranging throughout its suitable habitat while most of the species give up 

their distribution far before its potential range. Biotic mode of range limitation is very rare. Restricted gene 

flow contributes to limit the distribution of a species in most cases. A set of environmental variables or a 

single variable may induce restriction of gene flow into a population thereby limiting the range. With the 

advent of advanced molecular method and integration of population genetics and landscape study, it has 

been possible to check various hypothesis of range limit due to gene flow. With this concept, a candidate 

set of environmental variables to predict the distribution of P. cretensis, a Cretan endemic reptile with no 

known apparent reason for range limit. The working hypotheses are to know if the species meets its range 

limit in response to abiotic variable or if the restricted gene flow is contributing towards range limit. An 

ensemble species distribution approach was used to compare the potential distribution and the realized 

distribution. The environmental data was converted into appropriate cost raster to determine an 

accumulated cost distance and resistance distance. The cost distances were correlated with genetic distance 

calculated using a set multi-loci nuclear microsatellite gene to establish the relationship between 

environmental cost and gene flow. I found that the present distribution is below the potential range and 

abiotic variable is not the cause of the range limit. Also, the study did not find any significant relationship 

between selected variables and gene flow. The environmental variables used was found to be too coarse to 

have an impact upon the species. Use of micro-habitat scale environmental predictors and introduction of 

biological interaction and mechanistic models into SDM can help to solve the even curious case of P. 

cretensis. 

 

 

Key Words: Range limits, genetic differentiation, Environmental Niche Model, multi-loci microsatellite, 

landscape genetics. 
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1. INTRODUCTION 

1.1. Background 

Hutchinson (1957) was a pioneering ecologist to mathematically explain an indefinite species existence 

exclusively in an n-dimensional hypervolume of environmental variables given the absence of competition. 

However, the quest for the environmental variables that limit the range of any species has interested 

biologists long before Hutchinson (1957). Darwin (1859) was one of the foremost biologists to recognize 

the importance of competition and climate to limit the range of a species in time and space. The concept 

was later extended by MacArthur (1972) to explain the various mode of species range limitation by biotic, 

abiotic factor and their interactions. MacArthur (1972) also implicitly inferred the role of genes in adapting 

against unfavourable abiotic factors before finally losing on the distribution limits. Thus, the factors that 

limit the distribution of a species has been the fundamental issue in ecology, evolution or other biological 

fields (Gaston, 2009) since long. Although variously explained by different authors (Louthan, Doak, & 

Angert, 2015; MacArthur, 1972; Sexton, McIntyre, Angert, & Rice, 2009), it can be agreed that a species 

limits its range by any one of the three possible modes of species range limit: biotic factors (inter-specific 

interaction), abiotic factors (environmental factors) or the interaction between biotic and abiotic factors. 

 
1.1.1. Species Range Limits 

 

The difference in environmental factors in space and time has been mostly considered as the major driver 

of range limit. Both theoretical (Gaylord & Gaines, 2000; Holt, 2003; Pulliam, 2000) and empirical 

evidence (Araújo & Pearson, 2005; Arundel, 2005; Cumming, 2002) have considered spatial and temporal 

heterogeneity in environmental variables as a major driver for limiting the range of species. Temporal and 

spatial heterogeneity in climatic condition affect dispersal (Araújo & Pearson, 2005; Gaylord & Gaines, 

2000; Holt, 2003; Holt, Keitt, Lewis, Maurer, & Taper, 2005) or decrease carrying capacity strengthening 

density-dependence and high demographic stochasticity (Holt et al., 2005) thereby limiting the range. 

Towards the range extremes, population growth rate decreases due to a less favourable environmental 

condition (Cumming, 2002; Gutiérrez & Defeo, 2005; Mehlman, 1997) and decreased survival rates 

(Gutiérrez & Defeo, 2005). Unfavourable climate condition towards the range end also leads to 

reproductive failure (Arundel, 2005; Gaston, 2009; Pulliam, 2000). All these factors singly or in synergy 

lead to limiting distribution range for plants and animals. 

Biotic mode of species distribution limit is uncommon in nature (Gaston, 2009). Nonetheless empirical 

evidences have shown that inter-specific interaction like parasitism (Briers, 2003), predation (DeRivera, 

Ruiz, Hines, & Jivoff, 2005) and herbivory (Bruelheide & Scheidel, 1999) or competition (Bridle & Vines, 

2007; Goldberg & Lande, 2006; Louthan et al., 2015; MacArthur, 1972) limit the distribution range of 

native or introduced species. Resource (Bridle & Vines, 2007; Case, Holt, McPeek, & Keitt, 2005), carrying 

capacity and local population dynamics are important factors that determine the competitive advantage on 

competing species and thus to the extent of distribution for the interacting species (Case et al., 2005). 

Predation limits the range of prey by direct mortality (Case et al., 2005; DeRivera et al., 2005), unstable 

local population dynamics of obligate predator and prey (Case et al., 2005), reduced fitness for 

recruitment, and dispersal (Briers, 2003; Case et al., 2005) are the factors that restrict range limit due to 

parasitism. 

On an evolutionary perspective, environmental variables exert selection pressure to local population 

enabling them to adapt to local condition (MacArthur, 1972; Manel, Schwartz, Luikart, & Taberlet, 2003). 

These adaptive mutation and selection accumulate along the changing environmental gradient causing a 

new species to evolve thus creating a sharp limit for the distribution without known barriers (Dieckmann 

& Doebeli, 1999; Doebeli & Dieckmann, 2003; Polechová & Barton, 2015). More commonly, reduced 

gene flow from the central population prevents the population from local adaptation to limit the range 
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(Gaston, 2009; Kirkpatrick & Barton, 1997). Gene flow from centre population increases the genetic 

diversity of the marginal population and thus increases adaptive potential due to increased genetic diversity 

(Micheletti & Storfer, 2017) when gene flow is reduced due to high resistance of a some or one of the 

environmental factor, the  adaptive fitness of peripheral population against extreme climatic conditions 

decreases which limits the distribution range of a species (Eckert, Samis, & Lougheed, 2008; Gaston, 2009; 

Kirkpatrick & Barton, 1997; Micheletti & Storfer, 2017). 

 
1.1.2. Incorporating Gene Flow on Landscape Study 

                                                                                                                                                                                                                                                                                     

Genes, in simplified terms, can be defined as a sequence of DNA strands which are the basis for building 

a protein that is responsible for a particular function when transcribed by messenger RNA (H. Pearson, 

2006). The particular function may represent traits like eye colour, the colour of hair, blood type, the risk 

to a specific disease or biochemical process undergoing in an individual. When the copies of the gene 

differ from each other for a diploid set of DNA, the variant is called alleles which are the basis of visible 

phenotypic expression like hair colour due to dominant allele while the other remains recessive. 

Sometimes multiple alleles are codominant thereby producing a phenotypic trait determined by all alleles, 

eg. ABO blood group system in human (Clark, 2005). In the specific position in DNA, tandemly repeated 

units ranging from 2 to 10 base pairs of nucleotides occur, which are commonly called as microsatellites 

(Bruford et al., 1996; Waits & Storfer, 2016). The microsatellites are characterized by high polymorphism; 

the genes in these loci differ within individuals (Bruford et al., 1996). This property makes the 

microsatellites an appropriate choice to study individual genetic variation (Storfer, Murphy, Spear, 

Holderegger, & Waits, 2010). The polymorphic alleles are transferred from individual to the next 

generation after successful mating and reproduction and to space as a result of dispersion of the 

individuals. When an allele of a particular individual is thus transferred to generation and space, it is 

termed as gene-flow which helps the organism to prevent reproductive isolation and promote local 

adaptation and adaptive evolution on complex landscapes (Whitlock & McCauley, 1999). These factors 

highlight the importance of gene-flow within the landscape. 

Marking and following individual organism as a measure of gene flow was the classical method used to 

determine the gene flow but it was time-consuming, expensive and difficult technically (Waits & Storfer, 

2016; Whitlock & McCauley, 1999). The advent of molecular techniques allowed the molecular estimate of 

gene flow is replacing the classical method (Waits & Storfer, 2016). The direct method of gene flow 

estimation includes assignment test and parentage analysis. The indirect approach consists of the 

coalescent approach and various population and individual-based distance metrics (Waits & Storfer, 2016). 

In assignment test of direct method of gene-flow estimation, multilocus genotype are assigned to its 

putative population based on the expected probabilities of that genotype in each potential source of 

population under Hardy-Weinberg and Linkage Equilibrium (Paetkau, Calvert, Stirling, & Strobeck, 1995) 

or in form of ancestry coefficients for the inferred population (Waits & Storfer, 2016). Alternatively, the 

direct estimation of gene flow can be done using parentage analysis where multilocus genotypes are used 

to determine the parents from a set of potential parents sampled using parental exclusion or statistically 

based parentage assignments approaches (Waits & Storfer, 2016). Sometimes population across 

environmental gradient are mostly continuous and panmictic; then it becomes difficult to differentiate 

between allele frequency and estimate gene flow using the direct approach. In the case of panmixia the 

indirect method of gene flow more useful for analysing the impact of the environmental variable on 

genetic structure (Waits & Storfer, 2016). These metrics also known as measures of genetic differentiation 

have a predictable relationship to the rate of migration (Holsinger & Weir, 2009; Waits & Storfer, 2016; 

Whitlock & McCauley, 1999) and thus can be estimated as the indirect measure of gene flow (Waits & 

Storfer, 2016). Recent advancement in molecular techniques combined with available statistical tools like 

geo-statistics and Bayesian approaches enabled the combination of population genetics and landscape 

ecology as an interdisciplinary field of landscape genetics (Manel et al., 2003; Storfer et al., 2010). This 
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integrated approach made way to check various hypothesis about barrier to dispersal, effect of landcover 

change (see Storfer et al., 2010 for review), gene flow hypothesis of range limit (Micheletti & Storfer, 

2015) and identification of unknown variable for range limit (Micheletti & Storfer, 2017). Wright (1943) 

conceived a positive correlation between geographic distance and genetic distance between population. 

This “Isolation by Distance” relation is now considered as working null hypothesis for establishing a 

connection between genetic distance and isolation by landscape (Waits & Storfer, 2016), isolation by 

resistance (McRae, 2006) or isolation by the environment (Wang, Glor, & Losos, 2013). 

The alternative hypotheses of isolation by the landscape, resistance or environment are analysed by 

connectivity analysis of resistance surface (Spear, Balkenhol, Fortin, McRae, & Scribner, 2010). A 

resistance surface is a gridded representation of an environmental variable or a combination of them 

(Spear et al., 2010) the value of which represents the cost of movement or reduction of fitness to flow of 

the gene of the individual (Zeller, McGarigal, & Whiteley, 2012). The resistance surfaces are parameterized 

either by expert opinion (Spear, Cushman, & McRae, 2016) or empirical evidence like resource selection 

function or species distribution model (Hagerty, Nussear, Esque, & Tracy, 2011; Wang, Yang, Bridgman, 

& Lin, 2008). 

The measure of gene flow between individuals or population is compared with the environmental 

resistance to infer the impact of the variable for the gene flow. Connectivity measures like Least Cost 

Model (Adriaensen et al., 2003) or circuit path model (Chandra, Raghavan, Ruzzo, Smolensky, & Tiwari, 

1997; McRae, 2006) transform the characteristics of the intervening landscape to a measure of resistance 

distance by the variable (McRae, 2006). The statistical validation can be performed between the estimate 

of gene flow with the estimate of resistance (Spear et al., 2016) using correlative approaches like 

correlation or linear models (Wagner & Fortin, 2016). The model with significant statistical support for 

limiting the gene flow is considered as the unknown environmental variable to determine the range limit 

of a species (Micheletti & Storfer, 2017). 

 
1.1.3. Study Species 

Podarcis cretensis (Wettstein, 1952) (Squamata; Lacertidae) is a small lizard (Figure 1-1) with a slender body 

and tail almost twice of the body length (Lymberakis, Poulakakis, Kaliontzopoulou, Valakos, & Mylonas, 

2008). It is an endemic in Crete and a few islets around Crete (Lymberakis, 2009; Lymberakis et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1-1: P. cretensis in the wild (Source: Natural History Museum of Crete) 
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The species inhabits shrublands, rocky area and dry river beds up to an altitude of 2000 m (Lymberakis, 

2009). Restricted only in the western part of the island (Lymberakis, 2009; Lymberakis et al., 2008, Figure 

1-2), the species is threatened due to the impacts of urbanization and tourism industry and is enlisted as 

“Endangered” species in IUCN (Lymberakis, 2009) with immediate threats of extinction if the causal 

agents do not cease soon (IUCN, 2012). 

 
Figure 1-2: Realized Distribution Limit of P. cretensis in Greece. Source: IUCN Red List of Species (Lymberakis, 

2009) 

Phylogenetically, the species belongs to P. erhardii (Bedriaga 1882) group that constitute P. erhardii, P. 

peloponnesiaca, P. cretensis and P. levendis (Lymberakis et al., 2008; Poulakakis et al., 2003) that are similar 

morphologically (Lymberakis et al., 2008). The splitting of the monophyletic group to new species has 

been contributed to the geological event during Tortonian Age of Miocene Epoch (circa 9 MYA)- opening 

of Mid Aegean Trench and then later during the Messinian Crisis (circa 5 MYA) also of Miocene Epoch-  

(Lymberakis & Poulakakis, 2010, Figure 1-3). The common ancestor of present-day P. cretensis population 

in Crete and its islets originated during the Messinian Crisis (Lymberakis & Poulakakis, 2010; Lymberakis 

et al., 2008; Poulakakis et al., 2003). The distribution of Podarcis cretensis has been stated as curious by 

various authors (Herkt, 2007; Zabalaga, 2008). The present-day population of P. cretensis is distributed only 

on the western part of the island and some satellite islets on the eastern part of Crete (Lymberakis, 2009). 

The molecular evidences show that the population of eastern islets share a recent ancestry and are linked 

closely to the western population (Lymberakis et al., 2008; Poulakakis et al., 2003) and that the distribution 

might have been extended to the east Crete historically and have disappeared from the eastern part, 

surprisingly with no paleontological records (Lymberakis 2018 pers. comm.). The population distribution in 

the western region is also unusual. The species consists of two subpopulations in the western part as 

indicated by mitochondrial DNA analysis. A relict clade that split approximately 2.9 MYA, is localized 

only in higher altitude of the White Mountains and the young clade that  originated  circa 2.3 MYA, is 
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found in the lower altitude of the White Mountains and the rest of the island (Lymberakis et al., 2008; 

Poulakakis et al., 2003; Poulakakis, Lymberakis, Valakos, Zouros, & Mylonas, 2005, Figure 1-4). The two 

subpopulations in the White Mountain have been known to interbreed (Lymberakis 2018, pers. comm.).   

 
1.1.4. Statement of the problem 

 

Owing to the curious distribution, its distribution has been tried to solve spatially (Herkt, 2007; Zabalaga, 

2008) or phylogenetically (Poulakakis et al., 2003). However, methods are unable to explain possible 

mechanism of range limit as it is evident that space has an impact on phylogeny (MacArthur, 1972) and 

vice versa (Pometti et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-3: Evolution tree for P. erhardii group (Image adapted from Lymberakis, 2010) 

 

Niche Models (Maxent etc.) used to define the distributional limits of P. cretensis (Herkt, 2007; Zabalaga, 

2008) use the correlation between the observed pattern of presence (and absence) to the bio-climatic 

variables to predict the distribution limit of the species. However, these models might misrepresent the 

distribution limit because the range dynamics of the species like dispersal, migration or demographic 

stochasticity are not considered in these models (Schurr et al., 2012). On the other hand, Poulakakis et al. 

(2003) used molecular phylogeny to infer the present-day extent of P. cretensis from paleogeography of the 

Mediterranean. This model also, however, failed to incorporate the genetic variability as a result of 

environmental interaction which may limit the range of the species. Thus, the result from any one of the 

study methods might be incomplete without the other. This study tries to fill the research gap not realized 

by two different means to answer the curious case of the range limit of P. cretensis. Considering the impact 

the environmental variables have on gene flow might help to solve the crypic distribution. 
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Figure 1-4: Geographical location of two subpopulations (a) and phylogeny (b) for the western population of P. 
cretensis from White Mountain (Green Arrow represents relict Population and Red young population).  Image adapted 
from Zabalaga, 2008 (a) and Poulalakis et al., 2005 (b). 

 
1.1.5. Research Objective 

 

The broad objective of the study is to determine the landscape variables that restrict the gene flow to limit 

the range of P. cretensis. 

Specific objectives of the study are as follows: 

• To determine the suitable habitat inside the current range and potentially suitable habitat outside 

the range.  

• To determine the variable with a high cost for gene flow. 

 
1.1.6. Research Question 

 

1. Does the potentially suitable habitat for the species only fall within the current range?  

2. What are the variables that prevent the gene flow to limit the range of P. cretensis? 

3. Does an SDM predict the gene flow better than any candidate variable set? 

 
1.1.7. Research Hypotheses 

 

Hypothesis 1 

The potential distribution of P. cretensis is larger than the current distribution. 

Hypothesis 2 

Isothermality, altitude or landcover restricts the gene flow to limit the distribution to the current range. 

Hypothesis 3: 

The probability of presence as predicted by species distribution model restricts the gene flow to limit the 

distribution of P. cretensis. 
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2. MATERIALS AND METHODS 

2.1. Study Area 

The island of Crete (Figure 2-1) is in the Eastern Mediterranean Sea (35°20’27” N, 25°07’46” E) covering 

an area of approximately 8,336 sq. Km (Panagos, Christos, Cristiano, & Ioannis, 2014). The climate here is 

a Mediterranean type (Rakham & Moody, 1997; Vogiatzakis & Rackham, 2008) with hot, dry summer and 

cold, humid winters (Zabalaga, 2008). The rainfall ranges from 2000 mm at the White Mountains to 240 

mm in south-east Crete (Rakham & Moody, 1997; Vogiatzakis & Rackham, 2008). About 6-degree fall in 

temperature per 1000 m can be felt with snow above 1600 m from October to May and occasional frost 

throughout the island (Vogiatzakis & Rackham, 2008). The island consists of 15 mountain ranges, three of 

which are above 2000 m high (Vogiatzakis & Rackham, 2008) which were created during the late 

Cretaceous period as a result of tectonic movement of African and Aegean Plate (Rakham & Moody, 

1997). These mountains are the main geographical features that create variation in aridity, temperature 

(Vogiatzakis & Rackham, 2008) and precipitation (Grove & Rackham, 1993). The landscape is dominated 

by Mesozoic and Tertiary limestones in high, middle and low elevations with phyllite-quartzite and 

Neogene deposits in lower elevations (Vogiatzakis & Rackham, 2008). 

 
Figure 2-1: Map of Crete laid over SRTM-DEM and Hill shade (Warmer colour represent higher altitude), inset: 
Position of Crete in Greece (Map Source for inset: World Imagery ArcMap) 

 

The floral element of the island is contributed by European, Asian and African affinities- largest being 

European Open Phrygana while the least, African floral elements like Viola scorpiuroides, Aristidia ascensionis, 

etc (Rakham & Moody, 1997). With around 200 endemic flora, Crete in one of the world’s biodiversity 

hotspot (Vogiatzakis & Rackham, 2008). Also with high endemism in wild fauna, the species richness of 

fauna is also considered to be rich (Lymberakis & Poulakakis, 2010). However, the rich biodiversity of the 
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island, the natural and semi-natural vegetation are now heavily impacted by human influence (Grove & 

Rackham, 1993) primarily due to habitat loss and degradation attributed to urbanization and tourism 

(Lymberakis, 2009). 

 

2.2. Data Collection 

This section describes the material and methods used in this study. The method consists of three parts: 

Species Distribution Model, Cost Raster Parameterization and Gene Flow Modelling. Collection of 

observation data and environmental variable to produce an ensemble species distribution model (Figure 2-

1, Section 2.3.2) to predict the potential range of P. cretensis contributed to the first part of the study. The 

empirical cost parameterization of the produced the SDM and expert opinion parameterization of rest of 

the environmental variable (Section 2.3.6) and estimation of landscape connectivity (Section 2.3.7) 

consisted of the next part of the process (Figure 2-2). The next step (Figure 2-2) consisted the collection 

of genetic data (Section 2.2.3), and estimation of gene flow (Section 2.3.8) to test the importance of a 

variable to limit the gene flow (Section 2.3.9).  

 
2.2.1. Species Observation Data and Pseudo-absence Data 

The species observation data were collected as a part of a molecular study conducted by the Natural 

History Museum of Crete. A total of 203 geo-referenced individuals were collected on the study. I 

removed duplicated presence points from the database. Finally, 126 geo-referenced points (Appendix 1) 

were available for the analysis. 

For models using presence-absence points (GLM and BRT), 1000 pseudo-absence point were generated 

randomly in ArcMap 10.6. The pseudo-absence points were made sure not to overlap the true presence 

point by buffering 1 km distance from presence points and masking it off for a pseudo-points (Appendix 

1) generation.  

 
2.2.2. Environmental Data 

Species Distribution Model makes use of environmental predictors to define the probability of habitat 

suitability (Austin, 2002; Phillips & Dudík, 2008). Spatial data like a bio-climate map, digital terrain map, 

soil factors and geology maps, vegetation related maps or maps relating the anthropogenic impact can be 

used for the creation of habitat suitability models (Franklin & Miller, 2009). I used the environmental 

variables that may show some ecological relevance to the species ecology (Table 1) based on literature 

reviews or expert opinion. I resampled, converted from vector to raster or converted raster to ascii data 

format of these variables in ArcMap 10.6. The final environmental variables were projected to WGS84 

UTM zone 35N reference system. Because no information on average dispersion or daily movement of P. 

cretensis was available, I used a cell size of 250 m to model the distribution of the species. The original cell 

size of most of the variables used, i.e. 1 km is too coarse for modelling the distribution of P. cretensis 

because of its size, and finer scale would have added the risk of spatial autocorrelation for SDMs. 
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Table 2-1: Ecologically Meaningful Candidate Set of Environmental Variables 

Variable Data Type Unit Original Resolution Source 

Actual Evapotranspiration Continuous mm 0.5 degrees USGS/NIEHS 

Annual Mean Temperature (Bio1) Continuous °C 30 arc seconds Hijmans et al., (2005) 

Mean Diurnal Range (Bio2) Continuous °C 30 arc seconds Hijmans et al., (2005) 

Iso-thermality (Bio3) Continuous Percent 30 arc seconds Hijmans et al., (2005) 

Temperature Seasonality (Bio4) Continuous Percent 30 arc seconds Hijmans et al., (2005) 

Annual Precipitation (Bio12) Continuous mm 30 arc seconds Hijmans et al., (2005) 

Precipitation of Driest Quarter (Bio17) Continuous mm 30 arc seconds Hijmans et al., (2005) 

NDVI Continuous - 1 km SPOT 

Altitude Continuous m 90 m SRTM 

Slope Continuous degree 90 m Calculated in ArcMap 

North Continuous degree 90 m Calculated in ArcMap 

East Continuous degree 90 m Calculated in Arc Map 

Distance to road Continuous m 250 m Open Street Map 

Distance to river Continuous m 250 m Open Street Map 

Landcover Categorical - 100 m ESA 

Soil Categorical - 250 m ESBN 

Geology Categorical - 250 m ESBN 

 

Bio-climatic variables are the interpolated derivatives of basic climate parameters like precipitation, 

maximum and minimum temperature collected throughout the world from climatic stations (Hijmans et 

al., 2005). The mean temperature throughout the year has some impact on the distribution of a cold-

blooded animal. Also, the Mean Diurnal Range, temperature fluctuation within a month can be related to 

monthly stress of temperature change which might drive the adaptation of the species. Similarly, the 

isothermality as an index that captures the day-night temperature oscillation relative to season oscillation 

has been known to be particularly important for insular species (Nix, 1986) as the physiological extreme of 

the species might not occur in the island or the species might be fully adapted to the extremes occurring in 

the island. Therefore, the variation between the daily and seasonal temperature that might cause stress for 

the species may contribute towards species distribution limits. The deviation from the yearly mean 

temperatures might also present the impact of climatic extremes in the physiology of P. cretensis.   As 

seasonal means and extremes of these climatic parameters are known to relate strongly with empirical and 

theoretical species distribution (Stockwell, 2006). 

Topographical map obtained from DEM were second classes of the environmental variable used for 

generating resistance raster (Table 1). These variables like altitude, slope, aspect, Eastness or Northness 

directly or indirectly affect temperature, soil characteristics or solar radiation and thus to the species 

biology (Franklin & Miller, 2009). As the species prefers a dry and open area with low water requirements 

(Lymberakis, 2009), availability of water and the amount transpired from the land might be related to the 

presence of P. cretensis. Therefore, I included actual evapotranspiration and distance to the river in the 

model. NDVI and CORINE Landcover data are the vegetation related variable used for the modelling 

(Table 1). These data-sets are used extensively for SDM because the gradients vegetation cover can be 

expressed as the habitat structure for wildlife (Franklin & Miller, 2009). Rather than using CORINE land 

cover data as such, ecologically meaningful habitat categories for P. cretensis was used by reclassifying all the 

available landcover type in Crete in ArcMap 10.6 (Table 2-2). Because P. cretensis is expected to make use 



DECRYPTING RANGE LIMITS: THE CURIOUS CASE OF PODARCIS CRETENSIS IN CRETE 

10 

of soil type for burrowing, basking, movement or camouflage, the soil type was included in the model. 

Habitat disturbance may be the factor to deter the species away or cause mortality in reptiles (Brehme, 

Hathaway, & Fisher, 2018), Euclidean distance to the road was used as disturbance maps. The Euclidean  

Figure 2-2: Methodology Flow Chart  

 

 

distance was calculated in ArcMap 10.6 from the available vector layer (Table 2-1) of the road. 

 
2.2.3. Genetic Data 
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The study includes genetic data from 203 individuals of P. cretensis collected by Natural History Museum of 

Crete throughout the island of Crete. Data were collected as a long-term survey conducted throughout 

Crete. The individuals were captured, or tissue sample from the tip of the tail was collected and preserved 

in the Natural History Museum of Crete.  

 A standard ammonium acetate protocol (Bruford, Hanotte, & Burke, 1998) or DNeasy Blood & Tissue 

Extraction kit (Qiagen®, Hilden, Germany) was used to extract DNA for 72 specimens. DNA genotype 

of the remaining individuals was obtained from the previous studies (Lymberakis et al., 2008; Poulakakis et 

al., 2003, 2005). The genomic data were then genotyped for 17 microsatellite loci (Appendix 2) for the 

estimation of gene flow. I used the genotype data of the individuals from the western population 

only if they had genotyped data for more than ten loci. 

Single PCR products were mixed with an internal size standard (GeneScan 500 LIZ, Applied Biosystems) 

and the amplified allele sizes were visualized on an automated sequencer, type ABI3730 (Applied 

Biosystems). The program STRand v.2.4.109 (Toonen & Hughes, 2001) was used for genotyping. The 

microsatellite allele binning was conducted using the program FlexiBin v.2 (Amos et al., 2007). 

All the laboratory work and genotyping were done by the colleagues from the Natural History Museum of 

Crete. The present study used already available data for the analysis. 

 
Table 2-2: Reclassified Landcover type from CORINE 

Corine Legend Corine Landcover type Classified Landcover 

1 Artificial Surface Buildup area 

2.1 Arable Land Highly Disturbed Agricultural Area 

2.2 Permanent Crop 
Low Disturb Agriculture 

2.4 Heterogenous agricultural areas 

3.1 Forest Forest 

2.3 Pasture Grassland 

3.2 Grassland, Heath, and Moor 

3.3 Open space with little/no vegetation Open/ Bare area 

5 Water Bodies Water Bodies 

 

2.3. Data Analysis 

2.3.1. Multicollinearity Test 

 

Multicollinearity appears when two or more variable in a statistical model are related linearly (Dormann et 

al., 2012). The collinearity makes the parameter estimate unstable, standard errors are inflated and results 

in biased inference (Dormann et al., 2012; Graham, 2003). Therefore, it is routine to remove these 

collinear variables in multiple regression models. I used a Variation Inflation Factor (VIF; Marquardt, 

1970 ) test to eliminate the correlated variable beforehand. I used a threshold of VIF= 10 (Kutner, 

Nachtsheim, Neter, & Li, 2005) to remove highly correlated variables. “Sample” tool in ArcMap 10.6 was 

used to extract the variable values at the presence and pseudo-absence points the and R-Studio was used 

to perform the test. 

 
2.3.2. Habitat Modelling 

 

To determine the probability of distribution of the species, I used an ensemble of 3 different species 

distribution models viz Generalized Linear Model (GLM), Boosted Regression Trees (BRT) and Maximum 

Entropy Model (MAXENT). 
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Generalized Linear Model (McCullagh & Nelder, 1989) is a classical regression technique that allows the 

response of a set of environmental variables to be modelled simultaneously (Austin, Nicholls, & Margules, 

1990). A link function is used in GLM to combine the predictors with the response variable which allows 

flexibility to model any exponential family distribution (Guisan, Edwards, & Hastie, 2002; McCullagh & 

Nelder, 1989). The link function also ensures the linearity of the predictors and restricts the prediction 

within the range of appropriate values (Guisan & Zimmermann, 2000). GLM is a widely used species’ 

distribution modelling approach because of its ability to model ecological relationship realistically with 

strong statistical foundation (Austin, 2002). I used a binomial distribution with logistic link function to 

model the presence and pseudo-absence data for P. cretensis. I ran ten replicates of the data with 70 per 

cent of observation used for model building. I used R studio for running the model using the “sdm” 

package (Naimi & Araújo, 2016). 

Boosted Regression Trees considered as an advanced form of regression that combines the performance 

of many weak classifiers to produce a powerful classification (Friedman, Hastie, & Tibshirani, 2000) but 

also draws insights from Machine Learning techniques (Elith, Leathwick, & Hastie, 2008). BRT uses two 

algorithms to build up a model: decision trees and boosting (De’Ath & Fabricius, 2000; Friedman et al., 

2000). Decision trees use a series of rules for homogenous partition of data into subgroups, growing the 

tree and prune when the threshold is reached (De’Ath & Fabricius, 2000; Franklin & Miller, 2009). 

Boosting then minimizes the deviance by adding a new tree at each step (Elith et al., 2008). The model can 

be fitted to various distribution similarly as GLM using link and specific distribution function. I ran ten 

replicates with a maximum of 10000 trees to be built with 70 per cent of observation data used for model 

building because a larger number of trees is preferable (Elith et al., 2008). I used R studio to run the model 

using the “sdm” package (Naimi & Araújo, 2016).  

Maximum Entropy (Phillips, Anderson, & Schapire, 2006) belongs to the Machine Learning technique or 

algorithm modelling which assumes that the data is drawn from an unknown multivariate distribution, and 

the solution is to fit the unknown algorithm given the predictors and response data set (Breiman, 2001; 

Elith et al., 2008). Although the modelling technique was less common in ecological question previously 

(Elith et al., 2008), the use of machine learning in species distribution model has found a rapid growth 

(Yackulic et al., 2013) after introduction of Maxent (Phillips et al., 2006; Phillips & Dudík, 2008) in field of 

ecology. High predictive accuracy in comparison to many other methods (Elith et al., 2006) even with a 

small sample size (Hernandez, Graham, Master, & Albert, 2006; R.G. Pearson, Raxworthy, Nakamura, & 

Peterson, 2007) has made the model prevalent in the field of SDM. I ran ten replicates with 10000 

background points and 70 per cent of data set aside for model building. The default setting for auto 

features and regularization multiplier was used for the analysis. For all the analysis in Maxent, I used a 

freely available software Maxent (Phillips et al., 2006) to run the model. 

Information of a variable considered by one model is not considered by other models, therefore, it is 

advantageous to take a consensus of many such similar models to improve the predictive accuracy of 

models (Araújo & New, 2006; Bates & Granger, 1969). When making such an ensemble of the models, 

either a weighted or unweighted averages of candidate models can be done (Araújo & New, 2006). In this 

study, I used an unweighted mean of three models to calculate the ensemble model. 

 
2.3.3. Model Evaluation 

 

The predictive accuracy of a model for the intended use is tested using model evaluation (Allouche, Tsoar, 

& Kadmon, 2006; Araújo & Guisan, 2006). The assessment is important because it determines the 

reliability of model for the intended use (Guisan et al., 2006), compares alternative modelling techniques 

or effect of environmental or species data configuration on the model (Segurado & Araújo, 2004). I used 

the True Skill Statistics (TSS, Allouche et al., 2006) and Area Under Curve of the Receiver Operating 

Curve (Deleo, 1993; Fielding & Bell, 1997; Jiménez-Valverde, 2012) to assess the predictive accuracy of 
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the models. To calculate these parameters for the ensemble model, I used the unweighted mean of the 

candidate models. 

Estimate of model evaluation derived from data independent from the training data set is robust 

(Chatfield, 1995; Fielding & Bell, 1997). However, it is not always possible to collect new data (Chatfield, 

1995). Therefore the collected data is split into training and validation data set, and model validation 

performed out of the “hold-out” data set (Fielding & Bell, 1997). I set aside 30% of observation dataset to 

validate the model using TSS and AUC under ROC. 

TSS is a threshold dependent measure that accounts omission and commission error, unaffected by 

prevalence and size of validation data (Allouche et al., 2006). TSS ranges from -1 to +1 where +1 indicate 

perfect agreement and value of zero indicate a performance no better than random (Allouche et al., 2006). 

AUC under ROC is a threshold independent evaluation measure that is obtained by plotting true positive 

fraction (sensitivity) value against false positive fraction (1-sensitivity) for all available threshold (Fielding 

& Bell, 1997). Because it does not depend on a threshold, the area under ROC can be considered an 

important index with a value between 0.5 and 1; a value of 0.5 represents no better than random 

discrimination, and 1 represents perfect discrimination (Deleo, 1993).   

 
2.3.4. Variable Importance 

I used the correlation test available in “sdm” package (Naimi & Araújo, 2016) to determine the 

importance of each variable in BRT and GLM. In this test, the variable under investigation is randomly 

permuted, and the correlation between the predicted value and permuted value is done. If the contribution 

of a variable is high, the correlation becomes lower as the prediction is affected more due to permutation 

(Naimi & Araújo, 2016; Thuiller, Lafourcade, Engler, & Araújo, 2009). The measure of variable 

importance is then expressed as “1-correlation” (Thuiller et al., 2009). 

Also, I used the jack-knife procedure implemented in Maxent to determine the variable important for 

Maxent model. Maxent excludes one variable at a time to create different models, several univariate 

models using an individual variable and a model with all variables to compare the gain for each variable 

(Torres et al., 2010) to determine variable importance for each variable. 

I used non-parametric scoring to find the variable importance in the ensemble model. For the purpose I 

scored the top-ranked variable a score of 11- the total number of variables used, descending to one with 

the least important variable for each model. The variable which was not used for a model was scored zero. 

I calculated the percentage contribution for each variable to determine the variable importance for 

ensemble model. 

 
2.3.5. Population Genetics Analysis 

I tested Hardy-Weinberg Equilibrium and linkage equilibrium for the assumption of population 

parameters for genetic study. Hardy-Weinberg Equilibrium states that the allele frequencies of a locus are 

constant unless gene flow, natural selection, or mutation occurs in the population. Although not 

conclusive the failure to meet the assumption conclude at least one of these forces to be acting on the 

population. Similarly, linkage equilibrium test confirms that the genes are linked to each other and assorted 

independently to the next generation. A failure to meet the assumption might conclude that the loci are 

not independent, and the inferences of the parameter cannot be conclusive. I used GENEPOP version 

4.7.0 (Rousset, 2008) to test these assumptions. Also, I used GenAlEx 6.4 (Peakall & Smouse, 2006)- an 

MS Excel Addon for population genetics data analysis to calculate the number of alleles, expected 

heterozygosity and observed heterozygosity in the population as basic parameters of population genetics. 

All the tests were performed assuming a single population of P. cretensis, i.e. global test. 

 
2.3.6. Cost Raster and Landscape Hypotheses 

I created a set of hypotheses for variables that are important for the distribution of the species as indicated 

by different SDMs. For every variable to be analysed, I hypothesized the cost to be: 
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a. Inversely related for isothermality as greater isothermality means lesser relative oscillation and more 

favourable for gene flow. 

b. Linearly related for altitude as greater altitude means the greater cost for gene flow due to terrain and 

inverse temperature condition. 

c. P. cretensis is expected to have cost in increasing order from open space vegetation, grassland, forest, 

heterogenous agricultural area, agricultural land, urban and water bodies for dispersal and thus gene 

flow (Table 2-3). 

 
 
Table 2-3 Cost Allocation for Candidate Environmental Variables 

Allocated Cost Isothermality Altitude Landcover SDM 

1 33-34 <450 Open/Bare Area 0.8-1 

2 32-33 450-950 Grassland 0.6-0.8 

3 31-32 950-1450 Forest 
Low Disturbed 
Agricultural Area 

0.4-0.6 

4 30-31 1450-1920 Highly Disturbed 
Agricultural Area 

0.2-0.4 

5 29-30 1920-2400 Built-up 
Water body 

0-0.2 

 

d. Greater probabilities of presence mean lesser cost in dispersal for probability map from SDM. 

I classified the environmental variable to provide a cost of travelling across a class of environmental 

variable based on the inferred relationship between the variable and ability to disperse in a class (Table 2-

3).  

To test the hypothesis of the combined effect of variables, I used the ensemble model of the three SDM 

analysis (Section 2.3.3). The model outputs were stretched between 0 to 1, and the unweighted average of 

the output was used to ensemble the models. The values indicated the suitability index for the species; 

greater the value of the pixel, easier for an individual to traverse the pixel. The ensemble model was then 

classified according to the probability of presence thus giving empirical evidence of impedance cost. 

 
2.3.7. Hypotheses on Gene flow and effective distance 

Simultaneously with multiple hypotheses of cost raster, I also hypothesized the possible path of gene flow 

across the landscape. I used the two competing hypotheses to illustrate possible dispersal path of species 

and gene-flow, i.e. accumulated cost along least cost path and random multiple paths (Figure 2-2). 

a. Accumulated Cost along Least Cost Path: Intuitively, least cost path refers to the most effective 

path of dispersal with least resistance for the dispersing individuals (Figure 2-2 a). The 

accumulated cost is uncorrelated to Euclidean distance between the points and thus a better 

predictor for gene flow than the length of the least cost path (Etherington & Holland, 2013). So, 

the accumulated cost was used as a measure of effective distance between two sites. The effective 

distance was calculated on ArcMap 10.6 using the “Cost Distance” function in Spatial Analysis 

Tool. 

b. Random Multiple Path: Rather than following a single path, a gene can flow from one location to 

other location via various random path (Figure 2-2 b.). Analogous to electrical current (Chandra 

et al., 1997), the flow of gene can spread over the landscape with varying resistance between two 

points following multiple paths (McRae, 2006; McRae, Dickson, Keitt, & Shah, 2008). Based on 

the graph theory, the resistance distance as a measure of effective distance (McRae et al., 2008) 

can then be calculated as a sum of a sequence of resistance along a path in series and across 

multiple paths in parallel circuits (Equation 1). 
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1/R=1/R1+1/R2+1/Rn………………………Equation 2 

 

The effective distance between the site impeded by the resistance of the landscape and multiple 

paths were calculated in program CIRCUITSCAPE (McRae, 2006; McRae et al., 2008). 
 

 

Figure 2-1: A comparison between Least Cost Path (a) and Resistance Distance (b) across a resistance layer (Darker 

colour represent greater resistance). Adapted from (Spear et al., 2010). 

Although the two paths appear to be different, both paths are derived using the same resistance raster and 

complement each other (McRae, 2006). The least cost path can be considered as a special case of 

resistance distance when only one possible path exists between two sites.    

  
2.3.8. Gene flow estimation 

Because of the panmictic nature of the population in P. cretensis in Crete (Section 1.1.2), I used “Proportion 

of shared alleles (Dps)”-an individual based genetic distance that measures the proportion of similar alleles 

between two individuals (Wagner & Fortin, 2016), an indirect estimate of gene flow to estimate the gene 

flow. The genetic distance is calculated as 1-Dps. I used Dps because it does not assume the equilibrium of 

population and thus relaxes assumptions of population equilibrium. I used the mean genetic distance of 

the individual pairs calculated by ten bootstrapping runs. I performed all the genetic distance analysis 

between individuals in Microsatellite Analyzer (MSA 4.05; Dieringer & Schlotterer, 2003). I used R Studio 

to average the genetic distance obtained from MSA. 

 
2.3.9. Linking Landscape Distance and Genetic Distance 

I used Mantels test and Partial Mantel Test to answer the multiple hypotheses on cost allocation, the path 

of gene flow on the effect of genetic distance. Mantel test (Mantel, 1967) is a linear correlation between 

two distance matrices which can be used to test the important variable for the gene flow in the landscape 

(Legrende & Fortin, 2010). Partial Mantel Test is a partial correlation accounting for a random variable 

which is also expected to be correlated to the genetic distance. I constrained the effect of geographic 

distance to be constant to test the effect of the variable only using Partial Mantel Test.  I used “ecodist” 

package in R to calculate the Mantel and Partial Mantel Correlation Coefficient (rM) between two matrices 

to test the variable important for restricting gene flow.  
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3. RESULTS 
 

3.1. Species Distribution Model 

 
3.1.1. Multicollinearity Test 

VIF test of multicollinearity presented nine continuous variables that were the least correlated to each 

other (Table 3-1). Most of the bio-climatic variables were removed due to collinearity-only precipitation of 

driest quarter and iso-thermality were found to be below the threshold of significant correlation for 

climatic variables. Topographic variables remained the set of environmental predictors found to be the 

least affected by multicollinearity to each other (Table 3-1). 

 
Table 3-1: Candidate Set of Environmental Variables after Multicollinearity Test 

Environmental Variable Variation Inflation Factor 

Precipitation of driest quarter (Bio17) 7.03 

Altitude 6.34 

Iso-thermality (Bio3) 1.72 

Annual NDVI 1.67 

Distance to Road 1.52 

Distance to River 1.42 

Actual Evapotranspiration 1.28 

Slope 1.26 

North 1.01 

 

3.1.2. Predicted Range and Current Range 

 
3.1.2.1. GLM Model 

The distribution range of P. cretensis was created with “fair” accuracy using GLM model (Table 3-2). The 

model predicted only a small area of the high suitability in the peninsula of Chania and south of it. The 

model predicted a few areas to be suitable for the species (Figure 3-1). 

 
Table 3-2: Model Evaluation Statistics for all models analysed and ensemble model (the threshold for TSS is 

Sensitivity equals Specificity) 

S. No Model TSS AUC 

1 GLM 0.47 (0.07) 0.78 (0.04) 

2 BRT 0.66 (0.14) 0.81 (0.05) 

3 Maxent 0.40 (0.21) 0.93 (0.04) 

 Ensemble (Unweighted) 0.51 (0.14) 0.90 (0.04) 
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Figure 3-1: Model prediction by GLM  

Test of variable importance showed isothermality to be the major variable to determine the distribution of 

the species. Distance to river and landcover followed isothermality were top three predictors of P. cretensis 

in Crete by GLM model (Figure 3-2) 

 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3-2: Measure of Variable Importance for GLM model. 
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3.1.2.2. BRT Model 

 

The distribution range of P. cretensis was created with “good” accuracy using BRT model (Table 3-2). The 

model predicted the White Mountain to be the very suitable habitat of the species. Apart from the 

mountain, coastal regions on north east Crete was also predicted to be suitable habitat for P. cretensis. The 

model also predicted only a few areas to be suitable for the species (Figure 3-3). It also predicted a few 

moderately suitable habitat patches outside the current extent of P. cretensis. 

 

Figure 3-3: Model prediction by BRT 

 

Test of variable importance showed actual evapotranspiration to be the major variable to determine the 

distribution of the species. Isothermality, altitude, and distance to river followed AET as top four 

predictors of P. cretensis in Crete by BRT model. 
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Figure 3-4: Measure of Variable Importance for BRT model. 

 
3.1.2.3. Maxent Model 

The distribution range of P. cretensis was created with “fair” accuracy using Maxent model (Table 3-2). The 

model predicted the White Mountain to be the very suitable habitat of the species. Apart from the 

mountain, the coastal regions on north east Crete and Chania were also predicted to be suitable habitat for 

P. cretensis. The model also predicted only a few areas to be suitable for the species (Figure 3-5). It also 

predicted a few moderately suitable habitat patches outside the current extent of P. cretensis. 
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Figure 3-5: Model prediction by Maxent 

 

Test of variable importance showed actual evapotranspiration to be the major variable to determine the 

distribution of the species. Isothermality, landcover, and altitude followed AET as top four predictors of 

P. cretensis in Crete by Maxent model. 

Figure 3-6: Measure of Variable Importance for Maxent model 
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3.1.2.4. Ensemble Model 

The distribution range of P. cretensis was created with “fair” accuracy with an ensemble model (Table 3-2). 

The model predicted the White Mountain to be the very suitable habitat of the species. Apart from the 

mountain, the coastal region on north east Crete and Chania were also predicted to be suitable habitat for 

P. cretensis. The model also predicted only a few areas to be suitable for the species (Figure 3-7). It also 

predicted a few moderately suitable habitat patches outside the current extent of P. cretensis. 
 

Figure 3-7: Ensemble Model Prediction overlaid with the current distribution range and suitable habitat outside the 
current range (the distribution on eastern islets are not considered) 

 

The ensemble model predicted Isothermality to be the most important variable for determining the 

distribution of P. cretensis. Landcover and distance to river were the next contributing variables. AET with 

the other variables were top four contributing variables. 
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Table 3-3: Variable Importance Score in Ensemble Model 

Variable BRT Score Maxent Score GLM Score Average Score % Score 

Isothermality 10 10 11 10.3 16.9 

Distance to River 8 6 10 8 13.1 

Landcover 6 9 9 8 13.1 

AET 11 11 0 7.3 12 

Annual Mean NDVI 7 4 7 6 9.8 

Altitude 9 8 0 5.7 9.2 

Precipitation of Driest Quarter 5 3 8 5.3 8.7 

Slope 3 1 6 3.3 5.4 

Northness 4 5 0 3 4.9 

Distance to Road 2 7 0 3 4.9 

Soil 1 2 0 1 1.6 

 

3.2. Landscape Genetics Analysis 

 
3.2.1. Descriptive Statistics for Population Genetics 

 

Ninety-two individuals (Appendix 6) have at least 50% of genotypic information available across 13 

analysed loci. All loci were found to be moderately to highly polymorphic with 10-27 alleles per locus 

(Table 3-3). Mean observed heterozygosity across all alleles was found to be 0.74 (S. E= 0.03) and mean 

expected heterozygosity was 0.9 (SE=0.007). Fisher’s Test of Hardy-Weinberg Equilibrium (Chi sq.= 

106.58, df=26, p<0.00) and linkage disequilibrium (57 out of 75 tests between loci were significant at 

p<0.05) suggested that there is evidence of deviation from the equilibrium.  
 

Table 3-4: Descriptive statistics for samples loci (N is the number of samples, Na represent the number of alleles, Ne 

is the expected number of alleles, Ho is observed heterozygosity, and He represents expected Heterozygosity)  

  B6 C9 Lv3-19 Lv4-72 Pb10 Pli4 Pm16 Pm27 Pmeli19 Pmeli2 Pod1B Pod2 Pod8 

N 83 89 92 86 91 90 60 88 90 90 89 92 90 

Na 16 16 15 13 25 27 10 17 16 24 17 21 19 

Ho 0.76 0.78 0.80 0.79 0.85 0.62 0.72 0.56 0.50 0.73 0.80 0.86 0.88 

He 0.89 0.89 0.90 0.89 0.94 0.91 0.84 0.89 0.88 0.94 0.88 0.90 0.90 

 
 

3.2.2. Influence of landscape variables and SDM on genetic distance 

 

Mantels test on geographic distance and the genetic distance failed to show any isolation due to distance 

alone (Table 3-5). Various models were then run to determine the importance of selected variables to 

determine the gene flow P. cretensis. I modelled the accumulated cost within the least cost path (Figure 3-

8a.) between sites to test the hypothesis if the least cost path for isothermality, landcover, altitude or a 

species distribution model better contributed for a pattern of genetic distance. However, accumulated cost 

along the least cost path did not have a significant association to the gene flow between sites when 

checked with or without the dependence of geographical distance on the variable (Table 3-5) 
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Figure 3-8: Modes of gene flow for P. cretensis: Least Cost Path (a) and the probability of movement along multiple 

paths (b). The cost raster (isothermality) in grey shades and one source and one destination is given. 
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The resistance model that explains the importance of possible multiple paths (Figure 3-8b.) to contribute 

to the gene flow also did not show any association for the selected variables. Only a marginal correlation 

between altitude and the gene flow was seen when the geographic distance did not add further cost to the 

altitude (Table 3-5). Also, the cost parameter derived from present Species Distribution Model failed to 

explain the gene flow of P. cretensis within the landscape in either accumulated cost along the least cost 

path or multiple path hypotheses (Table 3-5).  
 

Table 3-5 Variable importance for gene flow 

Variable Test Model rM p-

value 

 Mantel Test Genetic Distance~ Geographic Distance -0.002 0.93 

Isothermality 

Mantel Test Genetic Distance~ Accumulated Cost -0.02 0.50 

Partial Mantel Test Genetic Distance~ Accumulated Cost -0.02 0.49 

Mantel Test Genetic Distance~ Resistance Distance -0.03 0.36 

Partial Mantel Test Genetic Distance~ Resistance Distance -0.04 0.28 

Landcover 
Mantel Test Genetic Distance~ Accumulated Cost -0.01 0.64 

Mantel Test Genetic Distance~ Resistance Distance -0.03 0.45 

Altitude 

Mantel Test Genetic Distance~ Accumulated Cost -0.02 0.40 

Partial Mantel Test Genetic Distance~ Accumulated Cost -0.05 0.13 

Mantel Test Genetic Distance~ Resistance Distance -0.05 0.12 

Partial Mantel Test Genetic Distance~ Resistance Distance -0.07 0.04 

SDM 

Mantel Test Genetic Distance~ Accumulated Cost -0.006 0.82 

Partial Mantel Test Genetic Distance~ Accumulated Cost -0.032 0.28 

Mantel Test Genetic Distance~ Resistance Distance -0.027 0.40 

Partial Mantel Test Genetic Distance~ Resistance Distance -0.039 0.24 
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4. DISCUSSION 

4.1. Models for Range Limits Detection 

Correlative approaches of environmental predictors and abundance, or presence and/or absence of 

species has been used to model the distribution of a species (Arundel, 2005; Cumming, 2002; Gaston, 

2009; Herkt, 2007; Rotenberry, Preston, & Knick, 2006; Sexton et al., 2009; Zabalaga, 2008). Presence-

absence type response data has received a wide application for these correlative approaches after the 

advent of ecological niche modelling (Sexton et al., 2009). In these modelling methods, the variables that 

have a significant effect on explaining the distribution range was considered as variables important for the 

range limit. Cumming, (2002) used a similar approach to explain the climatic variables that are contributing 

the range limits of 50 Ixodidae ticks to conclude climatic variables as a significant predictor of range limits 

over vegetation related variables. Similarly, Rotenberry et al. (2006) used the contribution of the 

environmental variable on PCA eigenvector of the predictor variables to determine a robust species range 

limits which could not have been obtained from environmental variables alone. Arundel (2005) explained 

the limiting environmental factor as the variable that significantly explained the difference between 

potential and release distribution- expanding the limits of a variable while meeting criteria for all other 

variables. For P. cretensis, Herkt (2007) used Maxent distribution model to explain its curious distribution 

attributed to vegetation and landcover. 

Although the inference seems logical the impact of climatic variables only cannot be explained as a lone 

contributor for species range limits, rather an uncommon one. This notion has particularly given rise to a 

state sometimes called as “Range Boundary Disequilibrium” (Sexton et al., 2009) when a species range is 

more commonly limited by factors other than abiotic variables only. Demographic stochasticity or failure 

to adapt to the marginal environmental condition because of gene flow from other population might also 

contribute to limiting a species range limit (Alleaume-Benharira, Pen, & Ronce, 2006; Kirkpatrick & 

Barton, 1997). These models also neglect the importance of interspecific competition (Bullock, Edwards, 

Carey, & Rose, 2000; MacArthur, 1972) or predation (Bruelheide & Scheidel, 1999) which has been shown 

to limit the geographical range. Although the impact of competition has been modelled using SDM 

successfully (Cadena & Loiselle, 2007), it has not been routinely used to test the hypothesis of range limits 

(Sexton et al., 2009). 

The correlative approach provides a likely mean of range limits, but it does not yield a mechanistic 

explanation for the process involved in the factors to limit the geographical range (Korner et al., 2016; 

Morin, Augspurger, & Chuine, 2007). Mechanistic models or process-based model addresses this 

deficiency of the former modelling approach (Chuine & Beaubien, 2001; Sexton et al., 2009) but are 

computationally intensive for many process parameter estimations and it is prone to have limited data 

availability (Dormann et al., 2012). Also, these models are unable to incorporate the effect of adaptation, 

migration and gene flow on the population that are an equally important factor of range limits (Gaston, 

2009; Sexton et al., 2009) which is lately receiving interest in ecologist molecular biologists. Indeed, the 

gene flow has been shown to restrict the distribution in diverse taxon including plant (Angert, 2009; 

Herrera & Bazaga, 2008; Sexton et al., 2016), fish (Leclerc, Mailhot, Mingelbier, & Bernatchez, 2008), 

amphibians (Micheletti & Storfer, 2017), reptiles (Hagerty et al., 2011), and mammals (Wasserman, 

Cushman, Schwartz, & Wallin, 2010). As these models incorporate abiotic factors (e.g., climatic variables), 

process (dispersal) and their interaction (adaptation and micro-evolution), these models make them a 

better choice to model the range limits of a species.  
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4.2. SDM and Fundamental Niche of P. cretensis 

 

Statistically, species distribution modelling predicts the environmental condition suitable to a species from 

a multi-dimensional environmental space based on the geographical location of the species. This 

prediction is then projected onto a geographical space to define the potential distribution of the species 

(Pearson, 2010). This multi-dimensional environmental space has a close affinity with the ecological niche- 

Fundamental Niche and Realized Niche (Hutchinson, 1957; Pearson, 2010). Deriving the environmental 

space unconstrained by the biotic interaction produces a “Fundamental or Grinellian Niche” of the 

species (Pulliam, 2000). “Realized or Hutchinsonian Niche” is produced when the sampled environmental 

space explicitly contains biotic factors like predation or competition (Hutchinson, 1957; Morin et al., 2007; 

Pulliam, 2000) which can affect the distribution of the species. The contrast is obvious; a model with 

biotic interaction produces the realized niche while excluding it produces the fundamental niche (Guisan 

& Thuiller, 2005). The contrast allows for the direct comparison if the species are in a state of equilibrium 

with the environment. In that sense, “Fundamental Niche” obtained from an ensemble of three different 

models (Figure 3-1) can be compared with ‘known” realized niche (Figure 1-1). The visual comparison 

(Figure 3-7) showed that there is a discrepancy between what is the present range and potential range 

stating a disequilibrium between the environmental variables and the present distribution. The difference 

is enough to explain the insufficiency of the direct influence of only abiotic variables for the present range 

of the species. This statement contrast to the conclusion stated by Herkt (2007) which stated that the 

climatic variables are enough to explain the curious distribution of P. cretensis. Given the similar nature of 

the environmental variable and method used, the greater the sample size in the present study might have 

caused the difference. It has been shown that increasing sample size generally increases model 

performance and reduces variability in predictive accuracy (Hernandez et al., 2006; Stockwell & Peterson, 

2002; Wisz et al., 2008). While Maxent has been shown to perform well with small sample size (Hernandez 

et al., 2006; Pearson et al., 2007), the greater sample size generally adds the predictive performance of 

Maxent (Hernandez et al., 2006) explaining the better performance predicted on the present study. Herkt 

(2007) included hyper-temporal NDVI as a vegetation index which was shown to have significant 

importance for predicting the distribution of the species. This variable, however, was not included in this 

study because the discrete variable had too many classes with only a few classes having enough sample size 

of presence point to provide accurate prediction (Jarnevich, Stohlgren, Kumar, Morisette, & Holcombe, 

2015). The present study included Annual Mean NDVI as a vegetation index which did not appear to be a 

top contributor (Table 3-3) although it had some significance for the model. 

 
4.2.1. Variable Importance for Distribution of P. cretensis 

 

Selection of a candidate model for species distribution is dependent on the researcher’s interpretation of 

the ecological response. Thus, it is possible that the variable importance might be different among 

different researchers. The present study estimated isothermality, land cover and distance to river to be the 

top-ranked three environmental predictors to explain the distribution of the species in an ensemble 

framework. Owing to the small size of islands, insular biodiversity cannot fully exploit the physiological 

limit of the climatic factors. The daily oscillation in relation to seasonal oscillation i.e. isothermality thus 

become the important climatic variable to define the range of insular species (Nix, 1986). The increase in 

isothermality represents lower seasonal oscillation relative to the daily oscillation or more stable 

temperature throughout the year preferred by cold-blooded reptile for a stable thermo-regulation. The way 

the landcover types were presented in the study was the direct impact of human on the landscape. It 

showed that the species least preferred the low disturbed agricultural area which might be related to the 

large extent of the vegetated area not suitable for the species. Open and less vegetated landcover type were 

the most preferred landcover type which again relates to its thermoregulation; mosaic vegetation and open 

area means enough microhabitat for basking and cooling off and protection from predators. Increased 
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preference for the increased distance to river indicates its preference to dry-mesic to dry soil conditions. 

Of quick conservation concern is its low preference towards low disturbed agricultural practices like an 

olive plantation and heterogenous agricultural area. Although heterogenous agro-landscape are known to 

increase the regional biodiversity (Fahrig et al., 2011), the species responded negatively to this landcover 

type (Appendix 3,4 and 5) demonstrating the importance of species-specific conservation actions. 

It is, however, important to be noted that the variable importance of the three different models was 

different, and so was the model predictions. The variable importance also changed across similar studies. 

Herkt (2007) found hyper temporal NDVI, land cover and soil to be an important predictor for P. cretensis. 

Zabalaga (2008) modelled the young clade of P. cretensis to find actual evapotranspiration to be the most 

important variable to predict the distribution which, however, the study was not done across the entire 

range of species. This discrepancy in the variable importance is not uncommon in species distribution 

modelling. Syphard & Franklin (2009) critically examined the difference in spatial predictions among 

species distribution to conclude that variable selection varied according to the model and most of the 

variable contribution can be weighted in favour of climatic variables. The explanatory power of variable 

increases as the predictor change slowly in space (i.e., high spatial autocorrelation) (Segurado, Araújo, & 

Kunin, 2006), a property which is much redundant in global climatic variables although all environmental 

predictors are spatially patterned (Syphard & Franklin, 2009). 

 
4.2.2. SDM, errors, and uncertainty 

 

The geographic sampling of the species presence is a subset of space and time of possible species 

occurrence (Jarnevich et al., 2015). The observation location might have been a moderately suitable or 

even unsuitable area for the species, yet the model represented it as a part of the equally probable sample 

in environmental space (Jarnevich et al., 2015). This might have introduced a risk of over-prediction of the 

species range. Conversely, the selected pseudo-absent are might have a viable population of the species yet 

be undetected (MacKenzie et al., 2002) thus giving false absence. The fundamental niche of species as 

explained by Hutchinson (1957) states the species responses to an n-dimensional hyperspace. To represent 

all these variables is impossible because there may be an infinite number of possible variables that may 

affect the distribution because of the limited availability of these variables or full understanding of species’ 

ecology (Pearson, 2010). The error due to missing a variable can either have so significance or differ 

largely based on the importance of the unmodelled predictor (Harris et al., 2013). Of importance of these 

variables is incorporation of a sand fly distribution which might possibly cause leishmaniasis in P. cretensis 

and thus are important biological control for the species towards east (Lymberakis 2018, pers. comm.). 

Other variables that were not realized to be important during the study like heat load index, specific soil 

properties like percentage of clay, loam or silt, availability of basking rocks and cover from predators, etc 

might carry important local scale information that may contribute towards more accurate prediction of 

distribution. 

Although these errors are prevalent in the model, the predictive accuracy of the model is enough to 

answer the question that the abiotic variables are not the probable reason to limit the range of P. cretensis. 

Alternatively, it is used as empirical evidence of cost parameterization in this study to hypothesize the 

impact of landscape on gene flow of P. cretensis. Jarnevich et al. (2015) also supported the use of these 

distribution models as a hypothesis to be tested and validated rather than considering it as a definitive 

explanation of the species distribution.  

 

4.3. Environmental variables and gene flow 

 

SDM and the environmental variables that were considered important for the distribution as predicted by 

SDM were tested if they were also important for the gene flow too. As evident from the result, it is 

unlikely that these variables had a significant contribution to the gene flow. Altitude only showed a 
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marginal significance towards increased genetic similarity with increased distance between altitude. 

Although it seems unusual, the increased similarity on increased distance also called as “counter-gradient 

gene flow” (Sexton, Hangartner, & Hoffmann, 2014) is not uncommon. Strong directional gene flow 

along the variable (Kirkpatrick & Barton, 1997) can cause increased similarity towards the increased 

distance. To conclude the causation, however, is difficult as the significance might have occurred due to a 

random chance. 

With the available evidence, it is probable that there is an unrestricted gene flow due to random mating 

(Sexton et al., 2014) provided that the environmental variables used are the only variables that are likely to 

affect the gene flow. This assumption looks unlikely because the environmental variables used here are 

more appropriate to model the species distribution at the regional scale and are unlikely to change across a 

large distance. The genetic distance is also very high among the individuals suggesting a clustered 

population structure with limited gene flow among the population. Therefore, it is more likely that the 

available environmental variables could not explain the resistance in gene flow.  Although the insufficiency 

might be contributed to the spatial scale of the climatic variables, there can be some other uncertainty in 

the model that can be the cause of the inconclusive pattern of the gene flow in this study for local-scale 

variables like land cover. 

 
4.3.1. Cost Parameterization on Landscape 

 

Except for the SDM cost parameterization which is empirical, all the parameterization for the cost was 

done using the realized impact of the environmental variable on the cost of gene flow along the 

environmental gradient (Section 2.3.6). This parameterization technique is subjective and depends on the 

experience of the investigator and the literature on the biology of the species (Spear et al., 2010). Given 

the lack of literature on the cost impeded by environmental variables for the gene flow, this study can be 

considered as a starting point for solving these questions. Also, the only linear cost was assumed on this 

study which removed the possibility of unimodal cost response to be included in the model. Recent 

evidence has shown the unimodal cost might have significant evidence to explain the gene flow (Trumbo, 

Spear, Baumsteiiger, & Storfer, 2013). A failure to include non-linear relationship might also have caused 

the insignificance of the selected variables. The use of the discrete cost parameterization might also have 

caused the decreased support for the association as it has been shown that the significance level dropped 

down when the continuous variable was converted to a discrete variable (Cushman & Landguth, 2010) 

 
4.3.2. Population equilibrium and genetic distance 

 

The analysis and interpretation of measures of gene flow are dependent on the basic assumptions of 

population equilibrium like Hardy-Weinberg equilibrium of genotype frequency and linkage equilibrium 

that indicates independent assortment of alleles during mating (Waits & Storfer, 2016). Although this 

assumption can be relaxed by using a proportion of shared alleles as a measure of genetic distance 

(Micheletti & Storfer, 2017; Waits & Storfer, 2016), this genetic distance measure might not be as robust 

as when the population was in equilibrium. 

Clustering of individuals into population might have fulfilled the basic assumption of population 

equilibrium within the population and some population-based genetic distance measure like Fst would have 

been a better way to explain the relationship between landscape and population. I attempted to use a 

genetic base of structuring population (Pritchard, Stephens, & Donnelly, 2000) without considering spatial 

configuration which could only determine two population of the species within the study area (Appendix 

7), description of which is beyond the scope of the present study. Population structuring that uses both 

spatial and genetic data (Corander, Sirén, & Arjas, 2008) might have better clustering powers to hold the 

assumption of population genetics true for robust estimation.  
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5. CONCLUSION AND RECOMMENDATION 
 

The main objective of the study was to model the distribution of P. cretensis to test if the range of the 

species was determined by the climatic variables only or was gene flow restricting its distribution. While I 

could not explain the variable important to restrict the gene flow, this study presents some of the crucial 

insights for the impact of environmental variables on gene flow. 

The model with fair accuracy predicted that the species had not attained its state of equilibrium with the 

climatic condition explaining non-significance of climatic variables only to explain the distribution limits 

of the species. However, the distribution model presented some highly useful information on the ecology 

of P. cretensis. Isothermality as a temperature related variable was the most important variable as it relates to 

thermoregulation of the species. Land cover was found to be the second important variable with selective 

deterrence towards urban and heterogeneous agricultural landscape. The species was found away from the 

water source as consistent with its preferred dry habitat.  

The genetic distance between individuals was high indicating a low level of gene flow in the landscape. 

The low level of gene flow also suggested a clustered population of the species. But the apparent cause of 

the limited gene flow could not be defined by the environmental variables tested for causality. Likely, the 

gene flow is affected by some finer scale environmental variable. 

SDM has a broad application on the study of species range limit either directly using correlative or 

mechanistic approach and as empirical data for determining the cost of dispersal or gene flow in similar 

studies. It can also be the method to select the variable that might be considered as limiting factors for 

these studies when coupled with genetic tools. It is important to consider the ecological relevance of the 

environmental variable and parameterize this relevance into appropriate cost which adds the complexity of 

the study. If enough information on the ecology of the species can be obtained and the various hypothesis 

of cost and impact of environmental variables be made, it is possible to define the cryptic barrier of P. 

cretensis. Based on the present study, the following recommendations are put forward: 

i. Environmental variables that influence micro-habitat of P. cretensis like heat load index, specific 

soil properties like percentage of clay, loam or silt, availability of basking rocks and cover from 

predators, etc might be variables that can be defined using geo-information or remote sensing 

across a large landscape can be used to better predict the distribution of P. cretensis. 

ii. Cost parameterization of a variable is an important factor in determining the restriction impeded 

by the variable in gene flow. Increased expert opinion can help to define an improved 

parameterization. Use of response curves from SDM might help to provide important 

information on the cost of dispersal. 

iii. Models of gene flow incorporating barriers with infinite cost like gorges, roads or urban areas 

might present the importance of physical barrier to restrict gene flow if they are the likely cause.  

iv. Use of spatial clustering techniques can help define the population to remove the disequilibrium 

among population allowing the use of robust distance measures. 

v. A robust test of the gene under selection pressure may be appropriate to remove such loci to 

provide a robust estimate of gene flow. 
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APPENDICES 

Appendix 1: Presence and Pseudo-absence data used in Species Distribution Modelling (Only Presence data was used 
for Maxent) 
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Locus 
Primer 

(fluorescent dye) 
Sequence (5’-3’) Conditions Reference 

B6 

B6-F (ROX) 
CTG CTG CTT CAA TCA 

CAC TC 

1.5 mM MgCl 

94 °C, 1 min 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Nembrini and 

Oppliger, 

2003) B6-R 

 

GCC TTG CCT CTC CAG 

AAC 

C9 

C9-F (TAMRA) 
CAT TGC TGG TTC TGG 

AGA AAG 

1.5 mM MgCl 

94 °C, 1 min 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Nembrini and 

Oppliger, 

2003) 
C9-R 

CCT GAT GAA GGG AAG 

TGG TG 

Lv3-19 

Lv3-19-F 

(TAMRA) 

CTG TTG CTA TTT TGT ATG 

CTT AC 

1.5 mM MgCl 

94 °C, 1 min 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Boudjemadi 

et al., 1999) 

Lv3-19-R 
CCT GTG ACT GTC CTC 

AGA GG 

Lv4-72 

Lv4-72-F (ROX) 
CCC TAC TTG AGT TGC CGT 

C 

1.5 mM MgCl 

94 °C, 1 min 

47 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Boudjemadi 

et al., 1999) 

Lv4-72-R 
CTT TGC AGG TAA CAG 

AGT AG 

Pb10 

Pb10-F (ROX) 
AGT GGA ATC GGC TGC 

AAT AC 

1.5 mM MgCl 

94 °C, 1 min 

47 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Pinho et al., 

2004) 

Pb10-R 
ACC AGT CCC AGG AAT 

TTA GG 

Pb47 

Pb47-F (FAM) 
CTT GGT GGT TAA CAA 

TGT TGG C 

3 mM MgCl 

94 °C, 1 min 

45 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Pinho et al., 

2004) 

Pb47-R 
GTG AGC TAA TAC AAC 

TCT CCA C 

Pb50 

Pb50-F (TET) 
GGA TGT TTC AGC ATG 

CTT GG 

1.5 mM MgCl 

94 °C, 1 min 

47 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Pinho et al., 

2004) 

Pb50-R 
AGA CCT CAC TGG GCC 

ATT AC 

Pli4 Pli4-F (FAM) 
TCA GTT CAT GCA TAA 

GGT CCA 

1.5 mM MgCl 

94 °C, 1 min 

(Bloor et al., 

2010) 
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Pli4-R 
TTC GGC ATT TTT CTT CAG 

GT 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

Pm16 

Pm16- (TAMRA) 
GGG ATG GAG AAA GAT 

GGC G 

1.5 mM MgCl 

94 °C, 1 min 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Richard et 

al., 2012) 

Pm16-R 
GCA CTT GCC TAC TGG 

TCA TAC 

Pm27 

Pm27-F (HEX) 
TCC ATG AGC TCC ACA 

CAC G 

1.5 mM MgCl 

94 °C, 1 min 

50 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Richard et 

al., 2012) 

Pm27-R 
TCC ACA GCC ACT TAC 

GGA C 

Pmeli02 

Pmeli02-F 

(TAMRA) 

AGT GGA ATC GGC TGC 

AAT AC 

1.5 mM MgCl 

94 °C, 1 min 

55 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Huyghe et 

al., 2010) 

Pmeli02-R 
ACC AGT CCC AGG AAT 

TTA GG 

Pmeli19 

Pmeli19-F (FAM) 
TTC CAA GTC TGA TTC ACT 

CCA A 

1.5 mM MgCl 

94 °C, 1 min 

57.4 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Huyghe et 

al., 2010) 

Pmeli19-R 
AGC TGC AAG CAC CTA 

GCA AT 

Pod1A 

Pod1A-F (FAM) 
TGA GAA GCA CAT CTG 

CAC AC 

1.5 mM MgCl 

94 °C, 1 min 

57.4 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Poulakakis et 

al., 2005) 

Pod1A-R 
TGA ACG CAT AAT GGC 

TGA AGG 

Pod1B 

Pod1B-F (FAM) 
CCT TCA GCC ATT ATG CGT 

TCA TC 

1.5 mM MgCl 

94 °C, 1 min 

57.4 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Poulakakis et 

al., 2005) 

Pod1B-R 
AGG ATG GGG ATA ACC 

CCA GT 

Pod2 

Pod2-F (FAM) 
GGC AAT GTT CCT GCA 

TGA CG  

1.5 mM MgCl 

94 °C, 1 min 

57.4 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Poulakakis et 

al., 2005) 

Pod2-R 
TGG GAC AAA AAG GCA 

GAA CG 
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Appendix 2: Primers and condition used in PCR amplification of microsatellite loci 

 

Pod3 

Pod3-F (TET) 
 TTA TCA GAC GTT GGG 

GAA AG 

3 mM MgCl 

94 °C, 1 min 

57.4 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Poulakakis et 

al., 2005) 

Pod3-R 
GCA CTT CAA CCC GAG 

GTC TG 

Pod8 

Pod8-F (TET) 
CCT CTA ACT ATC TGT TGC 

TGC TG 

1.5 mM MgCl 

94 °C, 1 min 

58 °C, 1 min 

72 °C, 1 min 

35 cycles 

(Poulakakis et 

al., 2005) 

Pod8-R 
CAC AAA GGG TAT CGA 

AGG AGG 
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Appendix 3: Response Curve for Maxent Model 

Appendix 4: Response Curve for GLM Model 
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Appendix 5: Response Curve for BRT Model 

Appendix 6: Individuals with genetic information overlaid with ensemble distribution model

   

 

 



DECRYPTING RANGE LIMITS: THE CURIOUS CASE OF PODARCIS CRETENSIS IN CRETE 

42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Appendix 7: Evanno’s delta K method to determine the genetic cluster. A population of 2 had the best support 
(above). The population cluster of 2 showing admixture. 

 

 

 

 

 
 

 




