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Abstract

Telomeres are repeat (TTAGGG)n sequences that form terminal ends of chromosomes and have 
several functions, such as protecting the coding DNA from erosion at mitosis. Due to chromosomal 
rearrangements through evolutionary history (e.g., inversions and fusions), telomeric sequences 
are also found between the centromere and the terminal ends (i.e., at interstitial telomeric sites, 
ITSs). ITS telomere sequences have been implicated in heritable disease caused by genomic 
instability of ITS polymorphic variants, both with respect to copy number and sequence. In the 
sand lizard (Lacerta agilis), we have shown that telomere length is predictive of lifetime fitness 
in females but not males. To assess whether this sex specific fitness effect could be traced to 
ITSs differences, we mapped (TTAGGG)n sequences using fluorescence in situ hybridization in 
fibroblast cells cultured from 4 specimens of known sex. No ITSs could be found on autosomes in 
either sex. However, females have heterogametic sex chromosomes in sand lizards (ZW, 2n = 38) 
and the female W chromosome showed degeneration and remarkable (TTAGGG)n amplification, 
which was absent in the Z chromosomes. This work warrants further research on sex chromosome 
content, in particular of the degenerate W chromosome, and links to female fitness in sand lizards.
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Telomere sequences (TTAGGG)n form terminal ends of chromosomes 
and have several functions, such as protecting the coding DNA from 
erosion at mitosis and contribute to correct identification of double 
strand DNA repair sites. In many taxa, there is a negative correlation 
between age, telomere length, and the capacity of telomeres to per-
form these vital functions, and telomeres have therefore been impli-
cated as strong candidates for dictating longevity and, consequently, 
life-history evolution (Monaghan and Haussmann 2006).

In recent years, the research community has seen a monumen-
tal increase in the research output on the roles telomeres play in a 
broad range of biomedical and biological situations, from cancer 
and disease research (Lin and Yan 2008), oxidative stress biochem-
istry (Von Zglinicki 2002), to life-history evolution (Monaghan 
and Haussmann 2006). Not the least in evolutionary ecology has 
this research interest increased with much focus on whether the tel-
omere length, and the dynamics of terminal telomere restoration via 
telomerase, are “magic bullets” with respect to predicting life span 
and lifetime reproductive success (Pauliny et al. 2006; Olsson et al. 
2011; Haussmann et  al. 2003). The latter observation stems from 
the fact that, at least in longitudinal studies of species with negative 
age effects on telomere length [e.g., most homeotherms (Gomes et al. 
2010)], telomere attrition, or the absolute length of the shortest tel-
omeres, play a crucial role in cell, and perhaps, organismic senescence 
(Monaghan and Haussmann 2006). However, due to chromosomal 
rearrangements through evolutionary history (e.g., inversions and 
fusions), telomeric sequences are also found between the centromere 
and the terminal ends (i.e., at interstitial telomeric sites, ITS). ITS 
telomere sequences have been implicated in heritable disease caused 
by genomic instability of ITS polymorphic variants, both in terms of 
copy number and sequence (Bolzán and Bianchi 2006; Lin and Yan 
2008). This diversity could be the result of ITSs acting as hotspots for 
breakage, recombination, rearrangement, and amplification, in addi-
tion to participating in DNA repair and regulation of gene expres-
sion. In evolutionary ecology, ITSs have so far largely been considered 
“noise” when estimating the length and attrition of terminal telom-
eres (Foote et  al. 2013), whereas in biomedical research there has 
long been grave concern for the link between heritable disease and 
ITSs [but in some cases also with positive ITS effects on DNA repair 
and prevention of more serious DNA damage; (Yan et  al. 2007)]. 
Interestingly, ITSs show remarkable taxonomic variation in number 
of sequence repeats and genome-wide distribution. In some squamate 
reptile species, such as Varanus salvator macromaculatus (Srikulnath 
et al. 2013) ITSs were not identified by fluorescence in situ hybridiza-
tion (FISH), whereas the same technique revealed ITSs in the aga-
mid lizard Leiolepis reevesii rubritaeniata (Srikulnath et al. 2009). In 
birds, interstitial telomeres appear widespread (Delany et al. 2000; 
Nanda et al. 2002; Foote et al. 2013), and in mammals 3 classes of 
commonly occurring ITSs have been described as short ITSs, long 
subtelomeric ITSs, and fusion ITSs (Lin and Yan 2008), with wide 
application value as genetic markers for disease caused by genetic 
instability (Lin and Yan 2008).

We have shown elsewhere (Olsson et al. 2011) that there is ongo-
ing selection on telomere length in free-ranging sand lizards, with 
females having positive longevity and lifetime fitness benefits from 
having longer telomeres compared with males (Olsson et al. 2011). 
At the time of that work, it was unknown to us whether males and 
females differed with respect to distribution and abundance of ITSs 
and whether these constituted a confounding factor in our analy-
ses of the effects of “telomere length” using Southern blotting (i.e., 
including all telomere repeat sequences, including ITSs). Our ration-
ale for this study was therefore to 1)  describe the chromosomal 

distribution of ITSs in males and females, and 2) discuss to what 
extent our results may help explain our previous link between tel-
omere length and fitness in sand lizards.

Methods

Animals, Cell Culture, and Chromosome 
Preparation
Most of the methodology for FISH has been reported by us (and 
others) before (Matsuda and Chapman 1995; Srikulnath et al. 2009, 
2013), and therefore here we only give a brief description. Four sand 
lizards (2 males, 2 females) were captured on a scientific license 
at our study population (Asketunnan) situated ca 50 km south of 
Gothenburg on the Swedish West coast (lat 57°22′, long 11°59′). 
The lizards were immediately exported to Nagoya University, Japan. 
After intraperitoneal injection of pentobarbital, the mesenteries were 
removed and used for cell culture. All experimental procedures in 
Japan using animals conformed to guidelines established by the 
Animal Care and Use Committee, Nagoya University, Japan. All 
procedures conducted in Sweden followed the guidelines established 
by the Animal Ethics Committee, Gothenburg University. The tissues 
were minced and cultured in Dulbecco’s Modified Eagle’s Medium 
(Life Technologies-Gibco), 100 µg/mL kanamycin, and 1% antibi-
otic-antimycotic (Life Technologies-Gibco). The cultures were incu-
bated at 26 °C in a humidified atmosphere of 5% CO2 in air. Primary 
cultured fibroblasts were harvested using trypsin and subcultured. 
Chromosome preparations were made following a standard air-dry-
ing method. The slides were kept at −80 °C until use.

C-banding and Molecular Cytogenetic Analyses
Chromosomal distribution of constitutive heterochromatin was 
examined by C-banding using the standard barium hydroxide/saline/
Giemsa method (Sumner 1972).

The chromosomal locations of the telomeric (TTAGGG)n 
sequences were determined by FISH as previously described 
(Matsuda and Chapman 1995, Srikulnath et  al. 2009). After 
hybridization with 250 ng of biotin-labeled 42-bp oligonucleotide 
complementary to (TTAGGG)n sequences, the probes were reacted 
with avidin labeled with fluorescein isothiocyanate (avidin-FITC; 
Vector Laboratories). To specify repeated sequence components of 
the heterochromatic W chromosome, we performed FISH analy-
sis with fluorescein-labeled oligonucleotide probes of all possible 
mono-, di-, and trinucleotide microsatellite motifs (Pokorná et  al. 
2011), (A)30, (G)30, (AC)15, (AG)15, (AT)15, (CG)15, (AAC)10, (AAG)10, 
(AAT)10, (ACC)10, (ACG)10, (ACT)10, (AGC)10, (AGG)10, (ATC)10, 
and (CCG)10 and 2 tetranucleotide microsatellite motifs, (AGAT)8 
and (ATCC)8, whose amplification has been found on the sex-spe-
cific chromosomes of many squamate reptiles in previous studies 
(Matsubara et al. 2013, 2015; Gamble et al. 2014). Slides were sub-
sequently counterstained with 0.75 µg/mL propidium iodide (PI). To 
detect female-specific DNA sequences on the W chromosomes, we 
performed comparative genomic hybridization (CGH) as previously 
described with slight modification (Kawai et  al. 2007). Genomic 
DNA was labeled by nick translation incorporating Cy3-dUTP (GE 
Healthcare) for males and FITC-dUTP (Life Technologies/Molecular 
Probes) for females. The labeled male and female DNA was copre-
cipitated, and dissolved in 20 µL hybridization buffer. The hybridi-
zation was carried out for 2 days. Fluorescent hybridization signals 
were captured using a cooled CCD camera mounted on a Leica 
DMRA microscope (Leica Microsystems, Wetzlar, Germany), and 
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processed using 550CW-QFISH software by Leica Microsystems 
Imaging Solutions Ltd. (Cambridge, UK).

Data Archiving
In fulfilment of data archiving guidelines (Baker 2013), the data in 
this work is presented in the micrographs in Figure 1.

Results

C-banding revealed that C-positive heterochromatin was present in 
the centromeric and telomeric regions of most chromosomes; the 
micro-W chromosome exhibited C-positive heterochromatin in the 
entire region (Figure  1; 2n  =  38, with a ZZ/ZW male/female sex 
chromosome system). The chromosomal locations of the (TTAGGG)n 
repeated sequences showed the terminal ends on all autosomes and 
the Z chromosome with no interstitial telomeric sequences in 2 males 
and 2 females examined (Figure 2, Supplementary Figure 1 online). 
We observed FISH signals for more than 20 metaphase spreads in 
each individual. There were no differences in the intensity and dis-
tribution of the sequence on autosomes between cells examined and 
between individuals. The hybridization signals of the (TTAGGG)n 
repeated sequences were observed in the entire region of the degen-
erate micro-W sex chromosome, suggesting that the (TTAGGG)n 
sequence has been amplified site-specifically. There was no difference 
in the signal intensity on the W chromosomes between the 2 females 
examined. A karyological FISH analysis was published in Srikulnath 

et al. (2014), including a cytogenetic map of 86 functional genes (this 
is outside the scope of this study). No hybridization signals were 
observed on the W chromosome for 18 microsatellite motifs (data not 
shown). In CGH analysis, differential hybridization signals between 

Figure  1. C-banded metaphase spread of a female Lacerta agilis (#F1). An 
arrowhead indicates the micro-W sex chromosome. Scale bar represents 10 μm.

Figure 2. Chromosomal locations of the (TTAGGG)n repeated sequence in a male (#M2) (a) and a female (#F1) (b) Lacerta agilis, and aligned chromosomes 
(c). The arrowhead indicates the hybridization signals of the (TTAGGG)n sequence on the W chromosome (b). PI-stained chromosomes with signals (right) and 
the Hoechst-stained same chromosomes (left) of the male metaphase are aligned according to our previous study (Srikulnath et al. 2014), and the Z and W 
chromosomes isolated from the female metaphase are shown in an inset (c). Scale bars represent 10 µm.
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male- and female-genomic DNAs were not observed on the W chro-
mosomes (Figure 3).

Discussion

Our FISH analysis showed no interstitial (TTAGGG)n repeated 
sequences on any autosomes in either sex in sand lizards using a pro-
tocol that identifies such ITSs in other reptilian species (Srikulnath 
et al. 2009). This variation among reptilian species suggests taxon 
specific evolutionary histories of genomic and/or chromosomal 
reorganization with respect to ITSs generating events. This lack of 
ITSs in sand lizards also suggests that our previously described sex-
specific links to proximate (Olsson et al. 2010) and ultimate (Olsson 
et al. 2011) dynamics of telomere length is not confounded by ITSs 
on autosomes. However, our molecular analysis also describes the 
first example in a reptilian species of extreme degeneration of a sex 
chromosome (W), with remarkably amplified (TTAGGG)n repeated 
sequences in the entire region. No hybridization signals of micros-
atellite motifs were detected on the Lacerta agilis W chromosome, 
although the amplification of microsatellite motifs on the hetero-
chromatic sex-specific Y or W chromosomes have been generally 
reported in sauropsids (Pokorná et al. 2011; Matsubara et al. 2013, 
2014, 2015; Gamble et al. 2014). CGH showed equal intensities of 
hybridization signals between male and female-genomic DNAs on 
the W chromosomes. These suggest that the micro-W sex chromo-
some is largely composed of the (TTAGGG)n sequences but not the 
microsatellite motifs and the female-specific sequences. Remarkable 
amplification of the (TTAGGG)n sequences are found in autosomal 
microchromosomes in many avian and squamate species (Nanda 

et al. 2002; Srikulnath et al. 2011), whereas the amplification on the 
sex-specific chromosome as found in L. agilis has not been reported 
in sauropsids except for a gecko species, Underwoodisaurus milii 
(Pokorná et al. 2014). No gene has been identified on the W chro-
mosome of L. agilis (Srikulnath et al. 2014). Thus, whether these 
(TTAGGG)n sequences have any fitness-influencing effects on 
W-linked genes (e.g., by regulating gene expression) is still unknown. 
Given that these W chromosomal features are female-specific, it is 
note-worthy that our previous work has shown higher mortality 
risks at the production of daughters rather than sons (Olsson et al. 
2004, 2005). This agrees with a higher risk of expressing deleteri-
ous recessives on the Z chromosome in the heterogametic (ZW) 
rather than homogametic (ZZ) sex. However, this does not preclude 
other deleterious effects resulting from potentially epistatic effects 
between degenerate W gene content and other parts of the genome 
in females.

In summary, we have shown that sand lizards lack intersti-
tial telomere sequences that could otherwise have interfered 
with estimates of terminal telomere length, and that sex chromo-
somes may contain telomere repeats to a hereto unappreciated 
level (although this constitutes less than 1/38 chromosomes, or 
<<2.6% of the genome, given that the W is on a par in size with 
the second smallest chromosome, No. 18). Some of our previous 
fitness effects of telomeres, and their differences in such effects 
between males and females, may depend on independent or epi-
static W telomere sequence effects. We also remind researchers 
that ITSs may have profound fitness consequences (e.g., by act-
ing as mutation hot spots and DNA breakage points) as sug-
gested by the biomedical literature, which may further warrant 

Figure 3. CGH in a male (#M2) (a) and a female (#F1) (c) Lacerta agilis. CGH with male (red) and female (green) genomic DNA show no obvious sex-specific 
sequences in both sexes (a, c). DAPI staining of the same metaphases (b, d). An arrowhead indicates the W chromosome (c). Scale bars represent 10 µm.
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their investigation from an evolutionary perspective in free-rang-
ing populations.

Supplementary Material

Supplementary material can be found at http://www.jhered.oxford-
journals.org/
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